Fast and Accurate Spherical Harmonics Products

鄭任傑

Outline

- Spherical Harmonics Product
- New Method
- Conclusion

The Laplace's Equation

$$
\nabla^{2} f \equiv \frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r} f\right)+\frac{\nabla^{2} f=0}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta} f\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial^{2}}{\partial \phi^{2}} f .
$$

The angular part solution of the PDE is the spherical harmonics

$$
Y_{n}^{m}(\theta, \phi)=\sqrt{\frac{2 n+1}{4 \pi} \frac{(n-m)!}{(n+m)!}} P_{n}^{m}(\cos \theta) e^{i m \phi}
$$

Band n, mode m. for $\mathrm{n} \geq 0$ and $-\mathrm{n} \leq \mathrm{m} \leq \mathrm{n}$.

Spherical Harmonics

M. Chung, K. Dalton, and R. Davidson, "Tensor-based cortical surface morphometry via weighted spherical harmonic representation," IEEE Trans. Med. Imag., vol. 27, no. 8, pp. 1143-1151, Aug. 2008.

Spherical Harmonics

- $Y_{n}^{m}(\theta, \phi)$ Orthonormal Basis on the sphere.
- Spherical Harmonics Reconstruction

$$
F(\theta, \phi)=\sum_{n=0}^{\infty} \sum_{m=-n}^{n} f_{n, m} Y_{n}^{m}(\theta, \phi)=\sum_{i=0}^{\infty} f_{i} B_{i}
$$

- Spherical Harmonics Projection

$$
f_{n, m}=\int f(\theta, \phi)\left[Y_{n}^{m}(\theta, \phi)\right]^{*} \mathrm{~d} \Omega=\int F B_{i}
$$

Rendering

- 3-Dimensional Field (light audio).
- Relighting Precomputed Radiance Transfer, Shadow Fields.

$$
L_{0}\left(x, \omega_{o}\right)=\int L\left(x, \omega_{i}\right) \rho\left(\omega_{i}, \omega_{o}\right) d \omega
$$

Spherical Harmonics Product

- Spherical Harmonics Double Product

$$
\int F_{1}(\omega) F_{2}(\omega) d \omega=\int \sum_{i} f_{1, i} B_{i}(\omega) \sum_{i} f_{2, i} B_{i}(\omega) d \omega=\sum_{i} f_{1, i} f_{2, i}=\boldsymbol{f}_{1} \cdot \boldsymbol{f}_{2}
$$

- Spherical Harmonics Triple Product

$$
\int \underbrace{F_{1}(\omega) F_{2}(\omega)}_{G(\omega)} F_{3}(\omega) d \omega=\sum_{i} \underbrace{\sum_{j} \sum_{k} C_{i, j, k} f_{1, i} f_{2, j}}_{g_{k}=\boldsymbol{f}_{1} \otimes \boldsymbol{f}_{2}} f_{3, k}=\boldsymbol{f}_{1} \otimes \boldsymbol{f}_{2} \cdot \boldsymbol{f}_{3}
$$

where $C_{i, j, k}=\int B_{i}(\omega) B_{j}(\omega) B_{k}(\omega) d \omega$

- Complexity $O\left(n^{6}\right)$

Spherical Harmonics Product

- Spherical Harmonics Multiple Product

$$
\begin{gathered}
\int \underbrace{F_{1}(\omega) F_{2}(\omega) \cdots F_{k-1}(\omega)}_{G(\omega)} F_{k}(\omega) d \omega \\
=\sum \underbrace{\sum \cdots C_{j_{1}, j_{2} \cdots j_{k}} f_{1, i} f_{2, j} f_{3, k}}_{\substack{g_{k}=\otimes_{k}\left(\boldsymbol{f}_{1}, f_{2}, \cdots, f_{k-1}\right)}} \\
=\otimes_{k}\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \cdots, \boldsymbol{f}_{k-1}\right) \cdot \boldsymbol{f}_{k}
\end{gathered}
$$

where $C_{j_{1}, j_{2} \cdots j_{k}}=\int B_{j_{1}}(\omega) B_{j_{2}}(\omega) \cdots B_{j_{k}}(\omega) d \omega$

- Complexity $O\left(n^{2 k}\right)$

Spherical Harmonics and 2D Fourier

Series

- 2D Fourier Series

$$
F(\theta, \phi)=\sum_{-n<s, t<n} f_{s, t}^{*} e^{i(s \theta+t \phi)}
$$

- Rewrite SH to Fourier Series

$$
Y_{l}^{m}(\theta, \phi)=\sum_{s, t} y_{s, t}^{*} e^{i(s \theta+t \phi)}
$$

- Conversion from SH to Fourier series

$$
F(\theta, \phi)=\sum_{l=0}^{n-1} \sum_{m=-n}^{n} f_{l, m} Y_{l}^{m}(\theta, \phi)=\sum_{s, t} f_{s, t}^{*} e^{i(s \theta+t \phi)}
$$

- Conversion Complexity $O\left(n^{3}\right)$

Fourier Series Product

- Spherical Harmonics Triple Product

$$
\begin{gathered}
G(\theta, \phi)=F_{1}(\theta, \phi) F_{2}(\theta, \phi)=\left(\sum_{s_{1}, t_{1}} f_{1, s_{1}, t_{1}}^{*} e^{i\left(s_{1} \theta+t_{1} \phi\right)}\right)\left(\sum_{s_{2}, t_{2}} f_{2, s_{2}, t_{2}}^{*} e^{i\left(s_{2} \theta+t_{2} \phi\right)}\right) \\
G(\theta, \phi)=\sum_{s, t} g_{s, t}^{*} e^{i(s \theta+t \phi)} \\
g_{s, t}^{*}=\sum_{\substack{s_{1}+s_{2}=s \\
t_{1}+t_{2}=t}} f_{1, s_{1}, t_{1}}^{*} f_{2, s_{2}, t_{2}}^{*} \Leftrightarrow \boldsymbol{g}^{*}=\boldsymbol{f}_{1}^{*} * \boldsymbol{f}_{2}^{*}
\end{gathered}
$$

where $*$ denotes the 2D convolution operator.

- Could be solved by FFT

Fast SH Multiple Product

$$
\begin{gathered}
\int \underbrace{F_{1}(\omega) F_{2}(\omega) \cdots F_{k-1}(\omega)}_{G(\omega)} F_{k}(\omega) d \omega=\underbrace{\otimes_{k}\left(\boldsymbol{f}_{1}, \boldsymbol{f}_{2}, \cdots, \boldsymbol{f}_{k-1}\right)}_{g} \cdot \boldsymbol{f}_{k} \\
G(\theta, \phi)=\sum_{s, t} g_{s, t}^{*} e^{i(s \theta+t \phi)} \\
\boldsymbol{g}^{*}=\boldsymbol{f}_{1}^{*} * \boldsymbol{f}_{2}^{*} * \cdots * \boldsymbol{f}_{k-1}^{*}
\end{gathered}
$$

- Could be solved by FFT

Fast SH Multiple Product

$$
\boldsymbol{g}^{*}=\boldsymbol{f}_{1}^{*} * \boldsymbol{f}_{2}^{*} * \cdots * \boldsymbol{f}_{k-1}^{*}
$$

- Straight-forward way

$$
\boldsymbol{g}^{*}=\underbrace{\left[\frac{\left(\boldsymbol{f}_{1}^{*} * \boldsymbol{f}_{2}^{*}\right)}{\operatorname{deg} \cdot 2 n-1}\right] * \boldsymbol{f}_{3}^{*} * \cdots * \boldsymbol{f}_{k-1}^{*}}_{\text {deg. }(k-1)(n-1)+1}
$$

- Divide-and-conquer

$$
\boldsymbol{g}^{*}=\underbrace{\underbrace{\left(\boldsymbol{f}_{1}^{*} * \boldsymbol{f}_{2}^{*}\right)}_{\text {deg. }(k-1)(n-1)+1} \cdots \underbrace{\left(\boldsymbol{f}_{\lfloor\boldsymbol{k} / 2\rfloor-1}^{*} * \boldsymbol{f}_{\lfloor\boldsymbol{k} / 2\rfloor}^{*}\right)}_{\text {deg.2n-1 }} * \underbrace{\underbrace{\left(\boldsymbol{f}_{\lfloor\mid}^{*} * \boldsymbol{f}_{\lfloor\boldsymbol{k} / 2\rfloor+2}^{*}\right)}_{\lfloor\boldsymbol{k} / 2\rfloor+1} \cdots \boldsymbol{f}_{\boldsymbol{k}-\mathbf{1}}^{*}}_{\text {deg.2n-1 }\left|\frac{k}{2}\right|(n-1)+1}}_{\text {deg. }\left|\frac{\boldsymbol{k}}{2}\right|(n-1)+1}
$$

- Complexity $O\left(k^{2} n^{2} \log (k n)\right)$

Fast Spherical Harmonics Product

H. Xin, Z. Zhou, D. An, L.-Q. Yan, K. Xu, S.-M. Hu, and S.-T. Yau, "Fast and accurate spherical harmonics products," ACM Trans. on Graph., vol. 40, no. 6, pp. 1-14, 2021.

Complexity

- Traditional: $O\left(n^{2 k}\right)$
- New Method: $O\left(k n^{3}+k^{2} n^{2} \log (k n)\right)$

SH to FS: $O\left(k n^{3}\right)+$ FS convolution: $O\left(k^{2} n^{2} \log (k n)\right)$

Conclusion

New Approach provide

- Simplifying from Spherical Harmonics Product to Convolution.
- Fast Spherical Harmonics Product through FFT in the Fourier Space.

Reference

1. H. Xin, Z. Zhou, D. An, L.-Q. Yan, K. Xu, S.-M. Hu, and S.-T. Yau, "Fast and accurate spherical harmonics products," ACM Trans. on Graph., vol. 40, no. 6, pp. 1-14, 2021.
2. M. Chung, K. Dalton, and R. Davidson, "Tensor-based cortical surface morphometry via weighted spherical harmonic representation," IEEE Trans. Med. Imag., vol. 27, no. 8, pp. 1143-1151, Aug. 2008.
